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Estimation of Hilbert space

valued parameters by the method of sieves.

I. Introduction By now the method of sieves, first suggested by Grenander, has
berome a fairly common technique in the infinite dimensional parameter ¢stima-
tion. There are several specific examples (see Grenander (1981), Geman (1981),
Karr (1987)) where this method has yielded consistent estimators with good asymp-
totic properties. However, the situation is quite different when it comes to finding
general conditions which imply the consistency of a sieve estimator and give an idea
about its rate of convergence.

The first step in this direction was taken by Geman & Hwang (1982} who general-
ized the Wald’s (1949) proof of the consistency of the maximum likelihood estimu-
tor of a finite dimensional parameter to the case of infinite dimensional parameter
via the method of sieves. They give conditions on the likelihood function and the
parameter space (v'hich is assumed to be a Polish space) so that there exists a sieve
such that the corresponding sieve estimator is consistent. This result is quite gen-
eral but it gives no information about the rate of convergence of the resultant sieve
estimator and moreover, the observations are assumed to be independent and
identically distributed (i.i.d.). The other results of this type (see, e.g., Karr (1987))
assume some additional structure on the likelihood function as well as on the
parameter space.

Here we generalize the ideas of Ibragimov & Hasminski (in finite dimensional
parameter estimation) and obtain a large deviation inequality for a sieve estimator
estimating a Hilbert space valued parameter. This inequality suggests a method of
consistent estimation of Hilbert space valued parameters using the sieve estimators
which correspond to the sieves consisting of finite dimensional, compact, convex
sets. This method naturally provides the convergence rates of the resultant estima-
tors and the observations do not have to be i.i.d.. The usefulness of this approach

is demonstrated by applying it to two examples; in the first one, the drift function
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in a linear stochastic differential equation is estimated and in the next, the intensity
function of a nonstationary Poisson process is cstimated. In both cases, a detailed
discussion of the convergence rates of our estimators and how they compare with
the other estimators proposed in the hterature is given.

The article is arranged in the following manner: the rest of this section is devoted
to the brief explanation of our approach, Section II consists of the basic large devia-
tion inequality, its derivation and the consequences, Section III contains the first
example of the drift function estimation and Section IV contains the Poisson inten-
sity estimation.

Let (X ,X5,....X,,) be an n-dimensional random vector (X;s can be general
random objects) with joint distribution P"g. Assume that, for each n, P"4
posseses a density, f”(0), w.r.t. a ¢-finite measure v* and the unknown parame-
ter O is an element of @, a subset of a real, separable, infinite dimensional Hilbert
space H. The goal is to estimate O consistently using the observations
(X 1.X4,....X,).

Let (g;),/j2 1; be an arbitrary but fixed set of independent vectors from H
and S, k2 1, be k-dimensional, compact, convex subsets in the subspaces of ©
spanned by (g;), /< k such that:

i) Sy € Ses1
ii) US, is dense in © and

iii) For every n and k, there exists a (random) point é,"’ such that
"0, = sup f"(9).
S e ) e’eg, f )

That is, (S, ) is a sieve consisting of finite dimensional, com pact, convex sets; ék"
is called a sieve estimator (for each n, it is merely a restricted maximum likelihood
estimator).

For 6 ©, let 8, denote its projection on §,. Then, since both 8, and 8," are

finite dimensional, using the techniques of Ibragimov & Hasminski (1981), one can
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obtain an upper bound on the probability:
Prg(nP11," -6, 11> h} (1.1)
where 1.1l denotes the norm in H, and B 2 0and A > 0 are constants.

Now (ii)implies that, for every k, — <o, the deterministic difference (bias)
118, —~ 811 = 0. Therefore, to estimate 6 consistently, it is cnough to estimate O,
consistently for some k, — o (i.e. the error in estimating 6, should tend to zcro
as n — o). Thus it is sufficient to show the existence of a subsequence £, such
that, for every h > 0 and some 2= 0, the bound for the probability in (1.1) tends
to zero. In fact, this also means that the rate of convergence of the sicve estima-

tor, éku, is atleast nP if, in addition, we have nP 118, ~0811 — 0.

In Theorem 2.1 an exponential bound is obtained for the probability in (1.1)
under conditions simiiar to those of Ibragimov & Hasminski (1981, Thecorem 5.1,
Ch.1). In Corollary 2.1 sufficient conditions are stated for the existence of a subsc-

quence k,, such that the sieve estimator Gk. is consistent. In the examples con-

sidered in Sections II1 & IV the conditions of this corollary are verified.

II. Let {x",u", Pg" } be a family probability spaces indexed by n> 1|
and Be ©. Points (observations) from x" will be denoted by X”. Assume that
the parameter space © is a subset of some fixed infinite dimensional separable Hil-
bert space H . Also assume that, for every n there exists a G-finite measuic V"

such that Py is absolutely continuous w.rt. v? for all 8e ©. Let f7(X". 86}

denote the corresponding density. ;
Definition 1 (sieve) 0
0

A sequence {S; } of subsets of © is called a sieve if U §; is
a dense set in © and for each n and & the maximum of f"(X",8) over §; is

attained in S, .

Definition 2 (sieve estimator) An estimator ék"(X") is called a sieve cstima- WS

tor corresponding to the sieve (S, ) if it is a point in S such that,

a1
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FrX"0,") = sup fU(X"1).

lESk

Our aim is to study the asymptotic behavior of a sieve estimitor ék " corresponding
to a given sieve (S, ), k2 1, of the following type :

i) for each &k =2 1, Sy is a compact, convex set in the span of
{gj} 1< j< k; where (g;}issome fixed set of independent vectors from ©.
ii) S < Sg,; and U S, is dense in © .

For any 0e © , let 8, denote its projection in S i. e.

H6—6; !l = min H18-1 L

tGSk

Remark 2.1 : Of course, our setup does not guarantee the existence of such a sieve,
we are assuming that we already have such a sieve.

Since §; is compact and convex, 0, always exists and is unique. Further-
more, 116-6, 1] - 0 as k — oo,

Let 6 €. O be the true parameter,

Let ®", be kxk nondegenerate normalizing matrices with rcal elements
such that, I®%, 1 — 0 as n — o where !®", | denotes the operator norm
of ®",. Note that ®", can be considered as a linear operator on the span of
{gj }, 1€ j< k in an obvious way. With this understanding 'et us define real

valued random functions Z", (u) with domains U", as follows :
Uty = (@) (S, — 8 ); (2.1)
and foru € U™,
Zh(u) =L ( 0 + ®"yu )= 1,(9 ) (22)

where, for 6e ©, {(X",8) = [ (0) is the loglikelihood function of the data at 8.
Then, since 6,” maximizes [,(8) in §, and Z",(0)=0 it is casy to verify that

{ u|(¢",‘)“(ék"—e,‘)nz h}c | suphZ"k(u)Z 0 }. Therefore the fol-

It 11>

lowing inequality is true:
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P {11(d, ) (8, =0, ) 112 h}<S P sup Z", (uy2 0 (23

Hu o> h

Under suitable assumptions on the functions Z ", (u« ) the probability on the RHS
above can be bounded.
Let G denote the following class of functions :

g € G if and only if,
i) g:/0,0 ) — R! and there exists X such that g is positive and strictly
increasing on [ xy o ).
i) Forall N > 0,

oo

[ »Y exp(-g(y))dy < .
0

Throughout this article C, with or without a subscript, will denote a positive con-
stant independent of n and k; it need not always be the samec. Also, [t ]| will

denote the largest integer smaller than x.

Theorem 2.1 Suppose that for each k € N the following conditions hold :
C1) There exist numbers 0O=0(k)> k, m=m(k )2 & and positive constants B"

and p=p (k) such that for all R > 0,

sup Efg 12" (u)—2Z", (v) " < B", (1+R?P) llu-v N
u LIV € R,
u,vﬁU"

C2) There exists g" € G such that for some n> 0,
Egexp(nZ"™(u)) < exp(—-g " (lull))
forall u e U".

Then, for h € [xo(n,k), = ),

Pe"{ 11(®", )" (8,"-6,)112h)< B, 3 (14 h+r)Prgn, exp(- b g":, )
r=0




where
i xo(n.k) isapoint such that g", s positive and increasing on [ x(n .k ), o ):
i) gy, - 8"k {h+r),

o—-k

e E k=

1

Bl(n,k)'—' C (Bnk )m D,

]

l-V) B 1

_ (74 2k+4
D = (24)%+4 et
-2 7 2" -1
ifm> o and
D = (')4)Zk+4 ( 1 )
- ) —(a—k)
-2~

ifm=q.

5
v) 32=Bz(k):ﬂ.

m

From this result a useful corollary can be deduced which gives sufficient condi-

tions for the existence of a consistent sieve estimator.

Corollary 2.1  Assume the conditions of Theorem 2.1. Furthermore assume that:

i) The constants m=m (k), p=p(k) and a=o(k ) in condition CI are constant multi-
ples of k , the multiplying constant being independent of k.

W B", < C* nk kC* for some C

i) gh (x)=ndk* —a(n k) I’ - t(nk)

where 8, W and vV are fixed positive numbers and t(n.k) and a(n k) are non-
negative consiants which may depend on n and k.

iv) For some number s > 0 the following holds:

a) d-us-2s > 0
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5
t(n,n” )
b) d(n.,n®)and —L—S—— tend ;0 zeroasn — oo
n

Then Gn," is a consistent estimator of © and moreover. for n sufficiently larze.

n> ng (/l).
Prg( (7 )7 (8.7=8.,)1> h }< C exp(=Cynb "5 i¥

where the constants C and C| > 0 depend on © alone.

Proofs : First a result from Ibragimov & Hasminski (1981) (Thecorem 19,
Appendix) s stated. This result gives conditions on a random function I, dectined
on R*, so that it will have continuous paths. Furthermore, the conditions give 4

very useful bound on the expectation of the modulus of continuity of .

Theorem A.1 Let £{:) be a real valued random function defined on F . a
closed set in R*. We shall assume that the process E(t) is measurable and separable
Also assume that the following conditions are fulfilled :

1) There existm 2 & > k such thatforallx € F ,
ElE(x)I™ < H(x)

{l) Forh € R* such that (x+h) € F,
ElEx+h)-E(x) 1" < H(x) hi®

where H (x) is some positive continuous function defined on F .

Then with probability one the realizations of E(t) are continuous functions.

Moreover, if W (h, &, L) = sup [ 1E(x)=E(y) |} where the sup is taken over
x,ye Fwith x-yl< h, kLlyl< L;
then

1 a-k
Ew(h, &, L) < D(k,o.m )(L"usftpLH(x))”' h ™ Inh~!
<

where the constant D (k ,0.,m) can be bounded by




242k+4.(

-(u-—k)
m )—l.

ifm> o andif m = Q then the second term in the above product is (12
This bound on D is not explicitly given in Ibragimov & Hasminski (1981) but
can be obtained by carefully going over their proof; the additional factor of InA~!
in the bound on the modulus of continuity also seems to be necessary when
m = a. The numerical value of this bound in terms of kK, m and « is very impor-
tant since this bound will have to be taken into account while determining the
subsequence &, which controls the growth of the sets in the sieve. The details
of the derivation of this bound are quite lengthy and so they are omitted, intercsted

reader can find them in Selukar (1989, Appendix).

Proof of Theorem 2.1: For r=0,1,2,...., let
Y,"={ueU" :h+tr< lull< h+r+l) (2.4)
We will show that,

Po"[ sup Z"(u)2 0] < Bl(1+h+r)82g"k,exp(—blg"k,) (2.5)

uey,

where by, By & B, are as in Theorem A.1. (2.5) will prove the assertion of the

theorem since, from (2.3),

P (11(®" ) 1 (8,"=0,) 112 h )< P"l sup Z"(u)2 0]
ul>

< Y Po"[ sup Z",(u)2 0]
r=0 uey,"

< B\Y B (1+h+r)P1g" exp(-big"i);
0




.9

which is the assertion of the thcorem. Now we proceed to prove (2.4) :
We subdivide the set

Y,"={ueU", :h+r < llull€ h+r+1} into N rcgions, cach with
diameter at most 2(1+h+r)8, & to be specified later. This subdivision can be
done such that, N £ (8)"‘. Denote the above subdivision of vy,” by,
Yr"» ¥r2" Y™ andlet u; be any fixed pointin y,;". Then,

N
Pg"[ sup Z", (u)2 0] < 2 Pe" {Z7% (u;) 2 -% }
j=1 -

uevy,

). (2.6)

o] —

+ Py { sup 8(IZ”,((u)--Z",((v)!)z
HNu-vilc 28°
N 1, i1 TeAer

( here, 8" = (1+h+r) d)

The first term on the RHS above can be bounded using condition C2 and the
Chebyshev’s inequality as follows :

a
} € Nelexp(-g" ) (2.7

l\)lr—

N
Z Pe”{Z"k(uj)Z -
/=1

( Nujlle (h+r,1+h+r]implies that g"k(llujll) 2 g"(h+r)=¢g" )
Also since, Z", (0) = O condition C1 implies that

Sup E"QIZ"k(u) m < Bnk (1+RP)RQ. (2.8)
eIl < R

Hence, in view of condition C1, (2.8) and Theorem A.l we get that,

1
Elq(28/1+h+r); Z",, (1+h+r)) S D (B (1+(1+h+r))P "

k a-k
(l+h+r)™ [28(1+h+r)] ™ In[28(1+h+r)] !

L ek
< D[B", (2+h+r)P*2 ™ 28] ™ In& ' (29)
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Using (2.9) and the Chebyshev’s inequality the second term in the RHS ot (2.6)

can be bounded as follows

Py" | sup Z™(u) = Z% (v)l2 —1-}
w-vi< 28 2
ul, v 1+ Asr
1l ok
< 4D [B", (2+h+r)P*2%1™ § ™ Ind7 1, (2.10)
Thus from (2.6), (2.7) and (2.10) we get,
Pen[ sSup an(u)2 0}
uey,”
i 1 a-k

< Nelexp(-ghy,)+ 4D (B (2+h+r)P*2m8 ™ Ing~l (211

So far we have not chosen 8. We will choose 8 such that N exp(—g";, ) and
a-k

8 ™ are of the same order of magnitude. Let

a-k
m n m o-k n
= — e — R = — ————————— ; . d
o = exp( (a-/c)+mkg k). Then & exp( (a-—k)+mkg o)y an
since, N € §7¥,
N exp(-g"+) < 8% exp(-g™y, )
o—k " ;
= -— . 2.12
From (2.11) and (2.12) we get,
Pg"[ sup Z" (u)2 0]
uey,"
k > -
- 2 n +2a;m _n
< - —" +4D (B 2+ h+r)? .
exp( ok e mi s i) (e (B ( r)PTEIT 8 ]

Hence

Py" [ sup.Z",‘(u)z 0)< B1(1+h+r)B’exp(—b1g"k,)g"k,

uey,

e SR
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which completes the proof.

Proof of Corollary 2.1: Let g,(x) = g"(,:(x): then
g.(x)=0C nd-us x—a(n)¥=t(n) (2.13)

where
a(n) = a(n,[n’]) and t(n) = t(n,[n°]). It is easy to check that g, (x) is posi-

tive and increasing on [xg(n),) where

1
nm RO 1)

xo(n) =a(n)+{ . .[ "
n

In view of assumption (iv) (a) and (b),

O-us—s5> O-us—25> 0and a(n) and t(n) are such that

t(n) - 0.
(n®]

Therefore xg(n) — O asn — <. Hence for every h > 0, there exists ny(h)

a(n) > 0 and

such that for all n > ng(h), xo(n) < h. Then the following inequality is a

consequence of Theorem 2.1.

Pro{ti(@",, )t (8,"-8,,)11> h)

< B, Y (1+h+r)Prexp(-bg,(h+r)) (2.14)
r=0

where because of the assumptions (i) & (ii) of the Corollary,

_ ok C_ _C
bi=bk) = ook k)’
Bzzﬁ_z‘l -~ C,

m
L
B,=C(B",)"D(k,rym)s C 24 * k€ n¢

= C (24)C'1 €
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and Ig, (h+r) 1< n€ k€ (h+r)C. (In all of the above expressions the constant
C denotes a positive number independent of n but it could be different in cach of

them.)

This means that the expression in (2.14) can be written as

Pig{lt(ad" .)" (8." —0,.)1l> h}
0 n n

< CnC QOIS (1+h+rPrexp(- g0 (h)
r=0 n
< (CnC Q0 lexp(- n(h
(Cn-( xp ( 2[ns]g )))
X i (1+h+r)82exp(— > gn(h+r)) (2.15)
r=0 n

( since g, (h+r) 2 g,(h)).
- For large n the first factor in (2.15) can be made arbitrarily small, in particular

smaller than 1. To see this, note that for large enough n

a(n) < g and Elir:]) < —;
then
=8 (1) = = (CRPH hma(n) M-k
s ¢ mrmpe_ L
2
Therefore

C n€ (24)6{""cxp(——~§-—gn(h)
2(n"]

S CnC M exp(~C n® R pv4 2
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= C n€ (29 exp (= C nGHs=s)pv)y,
However since A > 0 and d—us—s > s the RHS above tends to zero.
Thus for large n,

Prog{ (@, ) (8,.,"=0.) 11> h)

< i (1+h+r)32exp(—Lg,,(h+r))
r=0 [n®]

IN

exp(—g- n(d=Hs=s) pv, > (1+h+r)8? exp ( ——-C—-g,,(h+r) )
2 r=0 2[n®]

in

exp(-—% n(S—us-s) hY)

n=Bs=5) (py V)

X

i (1+h+r)Bzexp(—

r=0 2[n*]
(h+r)
.{because for large n, LiAkaiea > C nHs=5) (h+r)Y)
[n®]
< exp(*%n(s—”s_s)hv). (2.16)

The last step follows because, using the Dominated convergence theorem it is casy
to see that the second factor in the product above tends to zero as n — o=. The
assertion in (2.16) essentially proves the Corollary since, [( ®" . )'1 i = 0 as

n — oo implies that
18,," - 6,,1 5 0 as n — oo

and then we only need to observe that the deterministic difference

10— 6,,1 always — 0 as n — oo,

II1. Drift function estimation in linear SDE:

Consider the following model:
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de, = 6, x,dr + dW,, xy3= X, 0<:< 1 (3.1)

where (W,) is the standard Weiner process and the initial value X is a zcro

2

mean Gaussian random variable with varience equal to ©y°. Furthermore, Xy is

assumed to be independent of (W,).

The goal is to estimate (6,), an unknown deterministic function, using a

sample of n independent trajectories of (x,).

We assume that ©e L2([0,1],dr), that is, the parameter space
® = L2([0,1],dr). At this point we make an assumption that 002> 0. This
assumption is not very essential except that, in the presence of this assumption the
consistency can be obtained in L 2([O,I],dt) and the statements of the results are
simpler whereas if this assumption is violated ie. if X3=0 a.s., then the con-
sistency is obtained in LZ([O,I],Gez(t)dt) where oez(t) =F (x,z); (see Nguyen

& Pham (1982) Remark pp 609).

The above problem was first discussed in a paper by Nguyen and Pham
(1982). They proposed a sieve estimator and showed its weak mean square con-
sistency; no regularity assumptions on 6 were made. However, the rate of conver-
gence of this eétimator was not discussed. Later Kutoyants {1984) proposed a ker-
nel estimator and proved its weak pointwise consistency under some mild
differentiability assumptions on 6. He also discusses the rate of convergence of
this estimator. Here we propose a sieve estimator which is based on the method
suggested in the last section. It turns out that our estimator is a smoothed version
of the estimator proposed by Nguyen & Pham. We will see that unless some kind
of regularity assumption on 6 is made the method in Section Il doecs not yicld the
consistency of the proposed estimator, however, under mild regularity conditions
on O this estimator is shown to be mean square consistent as well as uniform norm
consistent; the rate of convergence being dependent upon the amount of regularity
assumed. We first define the necessary notation, state our results and then com-

pare them with the resuilts of Nguyen & Pham and Kutoyants. The proofs are
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given at the end of the section.

It is easy to verify that (3.1) has a unique strong solution (x,) given by
t H t
X, = Xg exp(J 0,du) +I exp(j 6,du)dw,. (3.2)
0 0 s

Note that (x,) is a continuous Gaussian process with the mean fuction identically
equal to zero, and if cez(t) = Ex,2 then it can be shown that

4 !

t
0o%(t) = 0ot exp (2] O,du)+ [ exp(2f 8,du)ds.
0 0 s

Obviously 0'92(t) is a continuous function on [0,1]. Let

Mg = sup Og(t) and mg= inf GgX(1);
0< 1< 1 0<t< 1

ther, since [0,1] is compact and 0'92(t) continuous, Mg< e Also, mg> (0

since Go2> 0. This means that, for f € ©,

mgllf 112 1If 112g< M glIf 112 (3.3)

1 1
where 1If 1%g= [ f,20o%(¢)dr and Hf 117= | f,2dr.
0 0

For 0€©®, let Pg denote the measure induced by the paths of (x,) on
(C,C) where C is the space of continuous functions on [0,1] endowed with
the supremum norm topology and C is the Borel o -field of subsets of C (that is,
it is generated by the open sets in C ). Then it is well known that (see, for exam -
ple, Liptser and Shiryayev (1977), vol. I, Theorem 7.19, pp 277) Pgand P, are

mutually absolutely continuous (P denoting the measure Pg when 8= () and,

m(w) = exp(j'o 8,0,dw, - EIO 8,%w, %dr) (3.4)

where w= (w,) e C.
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Suppose 8 = (6,). apointin ©, is the true parameter.
Our aim is to estimate 0, using a sample of n independent trajectorics of
(x).
Let C" be the n-fold product of C, C™ the n-fold product of C and
Pg" the n-fold product of Pg. Also, ®" will denote a typical point in C".
With this notation, the family of probability spaces under consideration can be
described as the triplet, {C", C", Py", 6e ® ).
The sieve S, to be used is defined as follows:
Let { f; } be an arbitrary but fixed complete orthonormal system (CONS) in

® = L?([0,1],dr) and for k = 1,

k k
S, ={00:0=3 0,f;; X 6,25 k% ) (3.5)
j:l j=1

g > O will be determined later. Let 6,” = 0;,” (w®) be the sieve cstimator
corresponding to this sieve. Now we are in position to state the main result of this
section, the large deviation inequality for Ok". However, we first have to dcfine

the domain of applicability of this result.

For 6 € O, let P,O and 9§, be the projections of 8 on the linear span of

., 1< j< k } and S, respectively, (f;} being the CONS used in defining the sieve
J k J

Si. ( clearly, for large k, k> K g, P,0=8,) For 0< €< —;- let

O, = {6€@ :nl-E 110 - P, 0 1? 5 0 as n — o ). (3.6)

That is, 8 € ©; if and only if

n'~¢ ¥ 82 5 0as n - o (3.7)

where 6;'s are the Fourier coefficients of 8 w.r.t. {f; }.
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From the definition it is casy to see that,
g1 < € = Oy c O (3.8)
that is, smaller € implies higher "smoothness”. It is clear that the type of functions
which belong to ©; depends on the CONS used in defining the sieve §; and for
an arbitrary CONS it is difficult to ascertain whether a given function is a member
of ®; or not. However, for some special choices of CONSs it is possible to iden-

tify large classes of functions which belong to ©;. One such choice of CONS

( f; }is illustrated below:

Set fi= 1 andforj 2> 2, let
f; (1) =V2cos(mjt) for even js and
fi () =V¥2sin[r (j+1) 1] for odd js; tel0,1]. (3.9)
For m 2 0 and 0< a < 1let ©, , be the class of m-times differcntiable
functions with m-th derivative Lipschitz continuous of order . More precisely,

©, .= {0€O@: 0is m times continuously dif ferentiable
with m —th derivative Lipschitz continuous of order a.
Furthermore, for 0 £ j £ m,

ij.— 0 (1) }(3.10)
dt)

8() (0) = 890 (1) where, 89 (1) =

If the CONS in (3.9) is used in defining the sieve §; then it can be shown that (sce

Corollary 3.5),

1
C) h £> —. 3.11
ma < ©¢ when 3 2m i) (3.1

Theorem 3.1  Assume that the true parameter O belongs to ©; for some E.

0< £< % Choose B =2 0 and q > 0 such that
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b=1-2-¢€e-2eq> e> 0.
Then, for all n sufficiently large and h > 0,

Pro(nP 118, —8,c1l> h )< exp(—C nbh?)
where C > 0, depends on 0 alone.

Now the Borel-Cantelli lemma and the above result give us the next theorem.

Theorem 3.2  Assume that © € ©; for some €, 0< €< —;— Choose B 2 0

and q > 0 such that

1~ 2B~ 2e~ 2eq > 0. Then,

nB1g" -01l - 0as as n — o,

For the following results it is assumed that the CONS {fj- } used in defining the
sieve S; is the one given in (3.9). Then the next result is just a restatement of

the last theorem using the fact given in (3.11).

Theorem 3.3 Let 0€0O,, m+o> —;- Then for every  P.
1
(m+o)~-—=
& ———————— thereexist€ > 0andq > Q (which depend on such that,
P< Smroorl ndq > O (which dep B)

nB 118, -61lg > 0 as. as n o oo,

1 . : .
It is well known that if 8¢ ©, , and m + & > > the Fourier serics of 6

converges absolutely and uniformly. Then a few additional computations give us

the following relation :
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£

sup 18" (1) = 0,c(0) 1< n? 118, ~0.! (3.12)
O< 51
(forn > ng(06)).

Therefore, in order to show the uniform norm consistency of 6,." at the rate

€
B+2

nB, it suffices to obtain Lz-consistenCy at the rate n . The next result gives

sufficient conditions for this to happen (Roughly speaking, we put B + -i— in place

-

of B in Theorem 3.3 )

(m+o)-1

Theorem 3.4 Let 6 € O, ,. m+a > 1. Thenforevery. f < ——m .
' 2(m+ o)+ 1

there exist€ > O and q > 0 (which depend on B) such that,

n®  sup iéne" (1) -8() 1 - 0 as, as n o o
01

The next result is an obvious consequence of the above when 0 is assumed to

be infinitely differentiable, that is if, 0 € @, , for every m.

Corollary 3.4 Let 8 € ©, o, forevery m, then,

for every B < % there exist € > 0 and q > 0 such that

nb sup I@ne" (t)-90(()! > 0 as., as n — oo,
0< 151

Comparison of results: Let {f;}, j2 lbe an arbitrary but fixed CONS and é,"‘ be
the sieve estimator corresponding to the sieve {S,,k> 1}, S, bcing the &-
dimensional subspaces spanned by fj, 1< j< k. Without assuming any regularity

on B, Nguyen & Pham (1982) proved that é,,_" converges 1o 8 in probability in L -
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norm, when k,, — o= slower than Vn . The rate of covergence of .6-,(‘". flowever,
was not discussed. We were not able to obtain a result of this type using the
method in Section U but, in view of Theorems 3.2 - 3.3 it is clear that in the pres-
ence of mild regularity on 6 this method works quite well. Next let us consider the

consistency result of Kutoyants.

Assume that e @, 4, forsome m and o such that m+a > 0.

Suppose (x!,,...x",) are n iid. copies of (x,),0<t< 1. Forj = l,..n and

__mra
z, = n “mrOrl gefine
Y., ()= (x,)71 if Ix 12 z,

= z,”! otherwise.

Then the kernel estimator of Kutoyants, 6,, (t) say, is defined by

6,,(:): -1

1
I ”
K
a, /2=:l'[ ( a

) Yn] (T) d.t/t

n 0 n

1

dm+w+l  gnd K () is some bounded kernel. The

where a, = n
weak pointwise consistency of 8, (1) is proved by showing that. for every ¢>
and d< 1,
(m+a)
lim  sup E {(n¥m*®*2 18 (£)-6,1)2 < oo.

n 30 c<tSd

(m+Q)

——————, there cxists a
I(m+a)+2

From the above it is clear that for every f, f <
choice of z, and a, such that,
nbB I§,,(t)—9,| — 0 as n — o in probability.

Let us compare this result with Theorem 3.4. Clearly, Kutoyants's result is more
widely applicable than Theorem 3.4; it is applicable for 86 e ©, ,,m+a > 0
whereas for Theorem 3.4 we require that m+a > 1. However, the possible rate

of convergence of H," exceeds the possible rate of convergence of the kerncl
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gstimator 5,, (t) when it is assumed that 0 € @m_a,m+a > 2. N is interesting

’ to note that even if 0 is assumed to be very smooth ie. if 8 € ©, , for every m,

o = o1 s n
the largest possible (limiting) value of B for 8, () is 7 where as for 6,7 it is

% (Corollary 3.4). It should also be emphasized that the convergence in Theorem

3.4 is in the uniform norm.

Proofs: First we prove Theorem 3.1. In view of (3.3) the statement of the
theorem is equivalent to the statement with [l [[ norm replaced by [l flg norm.
This equivalent statement is proved by verifying the conditions of Corollary 2.1.
The verification is done with the help of several lemmas The first two lemmas arc
technical, Lemma 3.1 bounds the higher moments of the L° norm of a square
integrable Gaussian process in terms of its second moment and Lemma 3.2 gives
bounds on its moment generating function. Both these results are important in
their own right and their proofs must be available in the literature but since the

auther was unable to find the original sources brief proofs are sketched.

Lemma 3.1 Let (Y,),0S t< T be a zero mean Gaussian process such that

T
Ej Y, 2dt < oo. (313
0

Then, forallk 2 1,

T k T k
E(f Y2id) < k*[E([ v, 2at) ).
0 0

Proof Let R(t,s)=E Y, Y, and let R be the corresponding covariance
operator defined on LZ[0.T). The condition (3.13) implies that
(Y el 2 [0.T ] a.s. and that R 1s a seif adjoint, non-negative definite, trace class
operator. In fact,

T T
tr(R):= Trace (R) = I R(t,t)dt = E I Y,Zdt. (3.0
0 0
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Since (Y,) € L* [0,T] as., we can expand it in terms of any fixed complete
orthonormal system (CONS) in L 2 (0,T]. If the CONS chosen is the one consist-
ing of the eigenfunctions of the covariance operator R, the resulting expansion is
known as the Karhunen-Loeve expansion. Let { f; } be the system of cigenfunc-
tions of R and Kj‘s be the corresponding eigenvalues then the Karhunen-Loeve

expansion of (Y,) can be written as
Y, = T NA X f(0) as (3.15)
Jj=1

where the coefficients (Xj-) are i.i.d. N(0,1) random variables.

From the above the following identities are immediate :

T
j Y 2dt = ¥ A ij and (3.16)
0 j=1
T (-]
Ef v2d=3 Aj=1w(R). (3.17)
0 j=1
.Therefore.
T k - k
EC[ Y2dt) =E( 3 A;X;%)
0 j=1

k

o0 l o
=E((XA) [(XX) T A X211
1 j=1

Applying Jensen’s inequality for the quantity in the square bracket we get

T k o k-1 -
E(jOY,Zdz)S(zlx,-) E(lejsz")
j:

o0 k
=(X i) EX*
1

since X;'s are i.i.d.. Moreover because Xy is N(0,1), using Stirling's approxima-

tion (see Rao (1973) pp 59),
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So finally we have

T k - k
EC] v2di) < k*(E A
0 1

which completes the proof ( see (3.17)).

Lemma 3.2  Assume that the Gaussian process (Y,) is as in Lemma 3.1 and R is
the corresponding covariance operator, also, let IR || denote the operator norm of R
then,

i) For0< a< (2R 1)L

T

Eexp(aj Y, 2dt) < exp( o (R)
0

—_—— ), 18
20 1R 1T’ (3.18)

If 0 a< (21 (R) Y~ the following weaker version of the above inequality

can be useful.

T
R)
E of v,2d) < _omR) 3.19
exp ( jo (mdr) S exp 1-2a tr(R) 49
ii)
4 r(R)
E ~f Y. 2dt) < —_—
exp ( fo A= P TR
- tr(R) ,
< — )y 3.20
P ( TT20rR) (3.20)
T
Note that tr(R ) = I EY,2 dt.
0
Proof From (3.15)
T - -]
J. Y‘zdt—_- Z )\.J XJZ
0 j=1
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where Xj's are eigenvalues of R and X,’s are iid. N(0,1). Note that if X isa
1
N (0,1) variable then, for J < —;— E exp (BX% = (1-2B) %. Thercfore,

using the fact that [IR 1} 2 }\.j foralljand o< (2 IR 11)™ ! we get

21
E exp(alj Xj2)= (1—2akj) z
Hence
T o -1
Eexp(af Y2di)= ] (1-204;) ?
0 j=1

exp(—-il- T In (1-20 %)) )
1

= exp(—l-iln(l-#—z—a-)—"j—))
2 9 1-20 A;
< exp(ila—z}"'-—)
T 1-2a};
since In (1+x) < x forx > O.
So
Eexp(afTY,zdt)s exp(ai —L——).
0 T 1-2a %

The conclusions in (i) follow because of the following observation

1 1 !
< .
—2ah; = T-20¢ IRl = 1-20tr (R)

Proof of (ii) is also almost identical.

Now, following the notation in Section II, let us define random functions

Z," (u) with domains U," as follows :

——
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Forn =2 1, k2 land B2 Olet
U = n® (5,-6,) (3.21)
and
Z,M () = L8, +n P u)-1,(8,) (3.22)
where 6, is the projection of 8 in S, and [, (0) is the loglikelihood function at
when the sample size is n.
From (3.4) and the fact that P"e is a product measure the following expres-

sion for the loglikelihood function is obtained :

dap"
[(8,0") = In ——
dP

— (")
0

—

1

=3[ 6o do, - %j 0,2 (w',)? ar. (3.23)
i=1 0 0

The next lemma verifies the first condition of Corollary 2.1.

Lemma 3.3 Foru € U,",
E 1Z,"(u) - Z,"(v) 1* < B lu—-v il
where
B, = nk(=B31 g3k 119112 (16M g)2 .
Proof From (3.23),

Z" () -Z, vy =0, (8 +nPu)y -1 (8, +n P v)

n ! . .
n® ) {j (y, = v,) 0, do',
0

i=1

l\)l-—-

1
[ 1@+nPu)?= 0+n P2 (0 )ar)
0

m k m
Hence, using the elementary inequality, (Y a;) < m* ( b a;* ). for
1 1




- 26 -

positive numbers a; repeatedly, and the fact that ((0‘,) are ii.d., we can bound

E1Z," (u)-2Z," (v) 2 by the following expression:
1 2k
n 2% B[ (g -v) o do, )
0
2

1
+nn*E([ [@+nPu)?- (8+nPv), 2] (0)?adr) . (324
0

We  will bound each term in (3.24) separately. First  consider
1 2k

E(| (-v)o,do, )
0

Note that, under Pg, (®,) satisfies the following SDE :
do, = 6, 0, dr + dW, (0) , 0= X,

where W, (w) is the standard Wiener process under Py, and X, is a N (0,64%)

r.v. independent of W, (w). Therefore

1 1
[ e =v) o do, = [ (4 - v,) 8 o dt
0 0

1
+ [ (4 - v) 0 dW (w).
0
1 2k
Hence E ( j (u, — v,) w, dw, ) is bounded by
0

1 2k
22 (E(] (- v) 8 0} dr) )
0 .
1 2k -
+E(] (4 -v) o aW, (@) ) (3.25)
0

The first term in the bracket above can be bounded by the repeated application of
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Cauchy-Schwartz inequality and finally, of Lemma 3.1 by

1

(k2 Tl—v g™ 118 115% )2

Thus,

1 2k
E(f (u-v)68 04dr) < k* lu-vilg? 11911g%. (3.26)
0

1 2k
Next consider E ( j (u, = v;) o, dW, (@) ) ( the second term in (3.25) ); it
0

can be bounded by
1 k

B E ([ (- v)? o dr) .
0

The above bound follows from the Burkholder - Davis - Gundy (BDG) inequality
stated here for the reader’s convenience (see Dellacherie and Meyer (1982), pp 287
where a general inequality is given).

BDG inequality Let (M), 0= t<T be a square integrable martingale wvith

squared variation process < M > , then,

E sup IM, 1% < (8p)PE<M> P
0<tsT

forall p 2 1. Therefore, using Lemma 3.1, we get

1 2k
E(f (u-v) o dW, (@) < 8%k lu-vilg. (3.27)
0

Hence, in view of (3.25), (3.26) and (3.27), the first term in (3.24) can be bounded
by

lu—v g2 p2k (=Bl g3k gak yig|2¢

The second term in (3.24) can be bounded in the same fashion and then combining

these two bounds the lemma follows.
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The second condition of Corollary 2.1 is verified in Lemma 3.6, the following two

lemmas are preparatory.
Lemma 3.4

1

-B 1 1
L J‘ uzw:d“)x"’sﬁj [(Qk+n'Bu),2—(9_,(),2](,)[2(1[)
0 0

4

Eexp(

1

— 1 —_

1
4 1
< (Eexp(—%f (n~Pu-2(8-8,)],%w,2dr)) (Eexp([ (8-8;), ', %dr)) .
0 0

Proof Recall that, under Pg the paths (,) satisfy the following SDE:
dw, = 6, w, dt + dW, (0) , wg = X,
Hence, writing 6, = (8-0;),+(8,), we get

1 1

1 -
!-IT—J' ut(l),d(l),"—g‘j [(Qk+n Bu)tz—(ﬂk)‘zlmlzd[
0

0
n_B l n__ 1 _2 1
n
== ju,co,dw,(m)+7j u,(6-8,),w,%d: - 2 [ u w2
0 0 0
Moreover,
_[Q 1 _zB 1
n-: n
Eg (exp(——[ w0,dW (0) - ——[ w’wdr)) = 1
0 0
dPe..._"iu
since the expression inside the bracket is in fact 7—(0)) i.e. it is a density.
0

Therefore, applying the Cauchy—Schwartz inequality,

1

-B 1
Eexp(—"4—j U, @, d ,— %j (B +nPu), 2= (8,), 21w, 2dr )
0 0

1

- ! n-28 2

2 ‘[)ufwldwf(m)_ 8

1
< (Eexp(Z [ uw,2dr))
0

!
-2 ! -g /! 2
z j’u,zw,zdu-"—z—j u (8- ), 0,%dt))
0 0

x (Eexp(-
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to]—

1 1
e
= 1.(Eexp(—-8—f (n=Pu,-2(8-8,), %0, 2dr + %f (6-8,),°w,%dr))
0 =0

The conclusion of the lemma follows if we apply the Cauchy-Schwartz inequality

again.

Lemma 3.5 For ueU", and k large so that
1-2118-8, 14> > 0,

—n UnPu-2(8-8,) 11’
16 1+ 1in=Pu—-2(6-9,) 115>

Eexp(rZ" (1)) < exp(

4(1-2110-9, 11g?)

x exp(

: Proof Note that Z,” can be written as

1 1
n o IR _ ;
Z,"(u) = Y nPf u,m‘,dm‘,-—z-j ([8+n~Pul,2-18,1,D(w,)%ar
(=1 0 0

{

where (mi,),OS ts1,i= 1,2 . n are iid processes. From this independence

and Lemma 3.4 we get,

Eexp(-;—Z"k(u))

n n

1 n 1 -
< (Eexp(-%j (n~Pu,-2(6-9,),1%w,2d1)) (E exp (| (e—Qk),zco,zdz))J.
0 1]

. To obtain the lemma we now apply Lemma 3.2 (ii) to the first term and (i) to the

last term of the product in the RHS above.

Let us bound the expression in the last lemma by a slightly simpler expres-

sion.




—
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First note that since 1l lg=lly Hgl < Tk=yllg,

—n e Pu—2(8-8,) 1152 . =n In =Bl 1lg-2118-8, 11g 12
16 14 11n Pu-2(0-08,) 11 16 1+1ln Pu—-2(0-8,)115°

Furthermore since u € U", = nB(Sk—Qk).

lullg < 2 Mg k9 nP
and, for large k, k> kg,
1+ 1ln=Pu—2(0-8,)1lg2 < Cgk™
(since 118-8, 1> 50 as k — o). Therefore,

—n 1 Bu-2(8-9,) 11y . ~nCo
16 1410 Bu-2(0-8,) 1192 k2

In Bl tg-2118-9, 115 173.28)

Also for large k, 1-2116-8, IIe2 > —;- hence

nil6— Qk ”92

< 2n118-0, |G (3.29)
1-2110-9, |15 Lo

Therefore, from (3.28), (3.29) and Lemma 3.5 we get,

Eexp(%Z"k(u)) < exp(g™(lullg)) (3.30)

where

-nC
ghp(x) = k2q8 In=Bx—2118-8, g >~ 2n 118-8, |12,

The conclusion in (3.30) is stated as the next lemma (which verifies the second

condition of Corollary 2.1)

Lemma 3.6 ForueU", andk 2 kg

E exp(%Z"k(u)) < exp(g",(lluilg))
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where

~nC
L B —2118-8, 11y 2= 2n 118-8, 1152,

g (x) =

It is easy to check the remaining conditions of Corollary 2.1. Note that, here,

) m=a=2k,p=20

2) B", < p2k(1=B)+1 p k(3+2q) C92k and

3) g% (x) = Condk ™™ x—a(n,k)lV=1t(n,k).

where

d=1-2B,u=2q,v=2,

a(n,k)=2nP110-8, Ilg and

t(n,k) = 2n110-8, g%,

Also recall that, by assumption, 86 ©; and 1-2P-2e-2eq > 0. Therefore if

we take s =€> (0 then

O-us-2s = 1-2P-2e-2eq > 0.
Now let us see if we can show
D a(n,[nf)) = 2nP110-0.1lg > 0O and

(%) _
[nf)

(ii) is easy to see because 8 € O implies that

ii) nl"EIIG-Q,,.Ile2 — Qasn — oo,
n'"€119-P 011 — 0
which implies that
nl=€119-9,.1132 — 0;

which is (ii). It also shows (i) since 1-€ > 2B. This concludes the proof of

Theorem 3.1.

Now we show that Theorems 3.2 - 3.5 follow from Theorem 3.1,
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Proof of Theorem 3.2 Obvious from Theorem3.1, the Borel-Cantelli lemma and

the following:

nP 118, —011< P 118, -0, 11+nPi16-9.1l

Before starting the proof of Theorem 3.3 let us review some standard facts from
Fourier theory. These are stated as propositions. From now on, {fj }oowill
always denote the CONS defined in (3.9) i.e. the one with the trigonometric func-
tions. Also recall that, for m 2 0 and 0< a< 1, ©, , is the space of m-
times continuously differentiable functions with m -th derivative Lipschitz continu-

ous of order Q.

Proposition 3.1 LetO € ©, o Then there exists M = M (m ,0,0) such that

1

He-P,81P=[[6-(P,0) 17dts Mn =t
0

The above inequality is a simple consequence of a result called Jackson’s ine-
quality [see Zygmund (1949), Theorem 13.6, pp 115, vol I.] and the fact that P, 0

is the projection of 0 on the linear span of {(fi b1 j< n;

Corollary 3.5
1

© c O, for all € > ———
m.a € a 1+2(m+a)
1 )
Proof We have to showthat 6 e ®, ,, £ > ———— implies that
¢ m.a I+ 2(m+o) PY

n"E1He-P.BI* > 0as n o o

From the last proposition,
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n=t116- P8 [12< M pl-e-2emra)

1

The RHS above tends to zero if l-e-2e(m+a) < 0 ie. if € > —0——or
1+2(m+a)

which is the required conclusion.

The next proposition shows that the Fourier coefficients of functions in ©,,
enjoy nice convergence properties (see pp 240, Zygmund (1949) vol 1 and

Theorem 35, pp71, vol I).

Proposition 3.2

Dif 8e B,y m+ a> —;— then
sup 18(t) I < \/fi 16, 1 < oo
0< <1 1

where 0 ;'s are the Fourier coefficients of 9.

i) 8 e O, o implis that

16; | ~ 0 (j7""%)

Proof of Theorem 3.3 Follows from Theoerem 3.2 and Corollary 3.5

(m+oc)—l

because for ever € —————— we can find an € and g> 0 such that
¢ y B 2(m+a)+1 9

0O, « < O and 1-2B-2e-2¢eq> 0).

Proof of Theorem 3.4 : This result follows easily from Theorem 3.2, Corollary 3.5

and Proposition 3.2. To see this first note that

9.7 ()-0 1< VZ(S 18.-0,1+ 3 1©.1)
OSSLI‘gl ne (06, {El e ngl )

Hence the result is proved if we show that

n®t n
a) nP '21 I9j -8;1 - 0 and
Jj=
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b) nBZ ze]r — Qasn —> oo

nf+ 1

First let us show (a). Using the Cauchy—Schwartz inequality,

nP Zl IGJ-"—Gj 1< nPon
j:

[SYI

c 1
n —
an 2,2
{ Z 19]- —Gj- 1)
j=1
Therefore (a) is proved if we show that

pr=
n 2 18,"-8,1l 5 0 as as n — oo,

(m+a)-1

we can lind an €
2im+ o)+ |

But this follows from Theorem 3.2 because for B<

and g such that O, ,c 6O, and 1—2(B+%)—2£-—2€q> 0. Now consider (b).

From Proposition 3.2 (ii), there exists a C such that for large n,

WY 1< CaP Y e

nt+1 nt+1
_Hence

nP Y 0,1< C b (a0 ¢ pbretiomeo

nt+ 1
The RHS above tends to zero if P+e(l-m-a)< 0. Again, for
B<

and thus (b) is proved.

(m+oa)-1

Mt Tl one can find an € such that ®, ,c O, and B+e(l-m-a) < O

IV Intensity estimation of Poisson process:

Let (N,),0<t< 1 ©be a Poisson process with intensity function
4

0=1(6,),0< 1< 1, ie, M,=N,—I 8, ds is a square integrable martingaie
0

with square variation process

t

<M>, =] 6ds. (4.1)
0
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The deterministic function 6 is assumed to be positive, bounded and bounded awuy
from zero. The aim is to estimate 0 using a sample of n independent trajectories
of (N,),0< r< 1. This problem is treated as one of the examples in a paper by
AF. Karr (1987). There he proposes a sieve estimator (Histogram sicve cstimator)
which is shown to be strongly consistent in the L ; norm. The rate of convergence
of this estimator is not discussed. As in the case of Section III, for this example.
the procedure suggested in Section II yields sieve estimators posscssing gocod con-
sistency properties. A detailed discussion of the rate of convergence of these csti-
mators is given after developing the necessary notation. All the proofs are given at

the end.

Let D = D [0, 1] be the space of right continuous, left limit functions on
{0, 1], endowed with the Skorokhod topology; D will denote the G -ticld of Borel

setsin D .

Let

O@=(felL?([0,1],dt):f 2 0,0<suplf(t)< w and
<1<
inf f(t)> 0} (1.2)
0g < 1

© will serve as the parameter space for our problem.

Suppose, for 8 € ©, Pgqyis the measure induced on (D ,D ) by the paths
of a Poisson process with intensity 6; then if 8, L € ©, it is well-known that (sce

Karr (1987), pp 475), Pg and Pu are mutually absolutely continuous and. for

we D,
P 1 1 8,
—-(m)zcxp(f (u,—O,)dt+j In(—)dw, ). (+3)
dP, 0 0 o

In what follows, (D”,D") will denote the n-fold product of (D,D ), " a

typical point in D" and P"g the n-fold product of Py.
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Following the method from Sec II, a sieve estimator 6", is proposed to esti-
£ k P

matc 6. The loglikelihood function, from (4.3), can be written as,

dP™
[ (6,0") =In (")
dP"
1 L1 |
=n| (1-6d+ 3% [ In(8)dw,. (4.4)
0 i=10

( W is taken to be identically equal to 1 and ®° are components of ®"; under P74
they are i.i.d. Poisson processes with intensity 6.)
Two different types of sieves S, are used.

[) Fork=2 landg> Olet

k
Se =(0€0©:08=3% 6,f;, k79< 6, < k9 for all t ) (4.5)
J=1

where for 1< j< &, f;(r) = I[j;l_._j_)(t).
kK Tk
(This sieve is some times referred to as the Histogram sieve.)
I
k
Slc = {96@39= Z Olfj, k™9 < O,S k9 for all t }
j=1

where for j 2 1, f;’s are defined as follows :

Take f;{ = land for j 2 2

V2 cos (njt) for even js and

fj ()

V2sin [r (j+1)¢] for odd js. (4.6)

The results in this section are almost identical to the results in the last scction.
To obtain consistency results, using the method from Section II, we nced some
additional "smoothness" assumptions on the Fourier coeficients of 0. Indeed, in
order for the the main consistency result, Theorem 4.1, of this section to ¢ appli-

cable, we require that 6e W, for some €> 0 and ¢ > 0 such tha
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1-2eq-2e > 0, theclass W o being defined as follows:

Weo=1(0€@: n!*® € 11P.8-611 - 0) (4.7)

where P, 8 is the projection of © on the span of {f;,1< j< m}, f;’sareasin
(2.4) or (2.5) and [l. 1l denotes the L 2. norm.

The class W . corresponds to the class ©¢ of the last section and in this
case also if the f;’s used in defining W, are the trigonometric functions given

in (4.6), itis easy to show that,

® c Weo for e(l+(m+a)-2q) > 1. (4.8)

m,Q

Recall that ©,, , is the class of m -times continuously differentiable functions with

m -th derivative Lipschitz continuous of order a.

We state the results of this section without any further discussion, the rela-
tions among different results here being exactly identical to the relations among the

corresponding results in the last section.

For the next two results 6," can correspond to either of the two sieves

given in (4.5) and (4.6).

Theorem 4.1  Assume that the true parameter 0 belongs to W g.q for some € > 0.

andq > 0 where 1-2e—2eq > 0. Choose B2 0 such that
b=1-2-¢e-2q> e> 0.

Then, for all n sufficiently large and h > 0,
P' {nP 118,." - 0.11> h )< exp(—-C n®h?)

where C > 0, depends on 8 alone.

Theorem 4.2  Assume that Oe W, for some € and q > O where

1-2e~2eq > 0. Choose B 2 0 such that
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l1-2p~€-2eq> €e> 0.
Then,

B8, -01l > 0as as n — o,

For the following results it is assumed that the CONS {fj } used in defining the

sieve S is the one given in (4.6) (i.e. consisting of trigonometric functions).

(m+o)-1

Theorem 4.3 Let 6€ ©,, ., m+ a> 1. Then, for every § < A miar2 there
exist €> 0 and g > 0 such that
nP 118, " 811 5 0 as as n o .
Theorem 4.4 Let e © m+a> 2. Then, for every § < Amro-2 there
) o ' ' Y 2m+a)+2

exist €> 0 and q > O such that

nP osup 18,7 (1)-0() 1 > 0 as. as n — .
0121

Corollary 4.1 Let 8 € ©,, ., for every m, then,

1
forevery B < — thereexiste > Oand q > 0 such that
2 q

nb Sup léne" t)y-0@@) 1 - 0 as., as n — oo,
Osts 1

Proof of Theorem 4.1 : This theorem will be proved using Corollary 2.1. The con-
ditions of this corollary are verified using several lemmas. Thc first lemma,
Lemma 4.1, is a simple result from point process theory. It can be easily proved

first by verifying it for simple functions and then extending it to more gecneral
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functions using the standard techniques.

Lemma 4.1 Suppose ( N, ), 0< t £ 1 is a Poisson process with bounded inten-
sity ( ©, ) then, for all f, bounded and deterministic,

1 1

Eexp([ foaNy) = exp(=[ (1-exp(f;) )8 ds ).
0 0

Let us recall the definition of the sieve §,. Fork 2 land ¢ > O,
k
S, ={6e®:0= jgl Oj fjs k™7 < 8() < k9, te[0,1])
where {fj }, 1 £ j £ k; is aset of independent vectors given in either (4.5) or
in (4.6).
For 8 e O, let §; denote its projection in S,. Recall from (4.4) that, the

loglikelihood function

1 n 1
16,0 =n{ (1-6)dt+ Y [ In(6) do (4.9)
0 i=1 0

where under P”%g, ( &),i ), 0< ¢t £ 1 arei.id. Poisson processes with common
intensity (6,), 0< ¢t < 1.
As usual, let us define random functions Z", (u) with domains U,"” as

follows :

Forn 2 land k 2 1, let

U =nB(S, -8,) (4.10)
and forue U, ",

Z,2" ) =1(8 +nPuy-1(8). (4.11)
Let g," :[0,) — R! be given by,

g" (x)=C nt-W -2 32 5 k24 110-9, I (4.12)
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where C > 0 depends on 8 alone.

Lemma 4.2 ForuelU,",
Eexp(—;-Zk”(u)) Sexp(—g"CHull)).

Proof : In view of (4.9) and (4.11),

! n Qk""n—Bu .
an (u):—nl‘Bj u, dt+Zln(—-e——), d(!.)‘,.
0 1

Recall that, under P7g, ( co,i ), 0< ¢t £ 1 are ii.d. Poisson processes with

common intensity (6,), 0 < ¢t £ 1. Hence,

nl‘B1
exp(———z—-f u, d)
0

E exp(—é—Zk" (u))

6, + n B u

n 1 .
-HECXP(E'ln( ) ),d(&)‘,),
1 e
. 1 8 + n P u . .
Setting f, = £y In ( . )s and then using Lemma 4.1 in the sccond
9y

factor in the above product we have

1 - ¢
n n
Eexp(=Z," (u))=exp(- —— [ udr)
2 2 %

1

1 ., +
8, +n Pu 2
.exp(—nj[l—(—"—e-—), 19, dr ). (3.13)
0 Yk

1

2
a+x) where a > 0 and xe(-a,a). Then by

Let F(x)=1-(
Taylor’s formula we have

2 ."_3.
(a+Jc")2

-X X
F = — —
(x) 2a+ 4Va

for some x',x €(0,x) (or (x,0) as the case may be).
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Taking a = @, (¢) and x

nP u,, the RHS of (4.13) can be written as

-p 1-p ! 0
n
exp ( — %—Jo u, dr + -—Z—J'O u, o ZI) dr
-2p ! 2 =
n t - * 2
—— (9, + n Pu") 8, dr )
4 '[) \/Qk () “ ‘ [
9 6-9
Writing =1+ S——-k—zi in the second term, the above quantity
6, (1) 8, (1)
takes the form
=g 1 (8-8)
n k )t
exp ( — | 4y, ——— dt
g 2 J'o L8 (D)
-3
nl'zﬁ y utz * -2—
~ — (9, +n Py 8, dr ). (4.14)
4 IO V8 (1) ¢ ‘ !

Note that, since it is a member of Sy, 8, (£) > k79 > 0 for every tr. Let us

consider  the first term in the exponent above. From the
Cauchy - Schwartz inequality,

1-g ! (0-8,) 1-B

— PRS2 AP AT R TRNTY S W)

2 9% 0, (1) 0

However, note that,
u
| —— 1< 2nP k2%,
0, (1)

because, (i) 8,€S, impliesthat k™9 < 9, (r) < k7 forallt and (ii) ueU;"
implies that lu, | S 2 nB k9; therefore,

u,

Bra
| 2n” kT _ o pB g2
0 (1)

k™9

Hence || —Q-L:- (1< 2nP k29 and therefore,

1-g ! 0 - 1-8
"2 f lu,-(—m—-(%f)lldzs A 2nB k2 . 119- g, 11.(4.15)
0
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Now consider the second term in the exponent of (4.14). First, since 8 € © there

exist mg and Mg suchthat, 0 < mg< 6, < Mg< o. Furthermore, :

=3

(8 +nPu”)y ?
V8 (1)

> k™% for all t.

. . * . * . .-
This ic so because, u ;& (0O.w,) (e lu , I< lu D, imrics b

0, + n B u* isamemberof S, (sois@,) and therefore,

k™7 < (0, +nPuty, < k9

and
k™9 < (8), £ k7 for allt.
Hence,
=3
. ]
(8 +nBu"), ? .3, 2 2
— = ) 0, +nBu")’y 2 k.
N B (1) 08, (8 :
-Therefore, *
1 2 -3
nl'zﬁ U, * -2_
—— (0, +n P u") 8, dt
4 Io V8 (1) ¢ ' l
1-2B
< - & " mg k™2 1lu 112 (4.16)
From (4.15) and (4.16) we then have
1
exp('—nl-B f u ———-——-(6— O ).
2 LT e W .
3
'11-'2B : ulz _ . _-2.
- — (0, + n By ) 0, dr ) .
4 J-() \ij (t) ( k t t

1-B 1-2B
< exp( "2 2nP k2.110-9, 1I-Z2 T me kM 1) n
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Therefore, in view of (4.14) and (4.17), we have shown that

Eexp(%Zk"(u)) < exp(-Con 2P k=20 (1 124 n k2 118-8, |1,

=exp(—g" C(lluib);

which completes the proof.

Lemma 4.3 Foru,ve U,",
EVZ,"(u)-Z," (v) < BY, llu - v 11

where

Bnk - 23lc+l n2k(l—l3)+l k2k(l+q) MQZk.

The proof of this lemma is very similar to the proof of Lemma 3.3 and we omit it.
Lemmas 4.2 & 4.3 verify all the conditions of Corollary 2.1 (the verification being
-quite routine) and thus Theorem 4.1 is proved. The deduction of Theorems 4.2 -

4.4 from Theorem 4.1 is also straightforward.
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